## Algebra 2: Test 1 Review 1

1. Consider the following polynomial functions:

$$f(x) = x^{2} - 4x + 5$$
  
$$g(x) = 7x^{2} - 4x - 2$$

Evaluate g(x) - f(x).

2. A polynomial function is given.

$$h(c) = 2c^4 - 1$$

Find  $(h(c))^2$  and write and equivalent expression.

3. An equation is shown.

$$\frac{x^3 - 13x^2 - 12}{x - 4} = Ax^2 + Bx + C + \frac{G(x)}{H(x)}$$

What are the values of B, G(x), and H(x) that would make the equation true? Write the most appropriate answer in each space provided.



4. Consider the following functions.

$$r(x) = 5x^{2} + 1$$
$$b(x) = 6x - 10$$
$$d(x) = \frac{2x - 3}{5}$$

Evaluate the following function compositions.

 $(r \circ d)(-1)$  $(b \circ d)(0)$ 

 $(b \circ r)(3)$ 

- 5. What is the inverse function of g(x) = 5x 8?
- 6. A quadratic function f(x) is shown.



Select symbols and values to restrict the domain of f(x) so that  $f^{-1}(x)$  is also a function.



7. Consider the following graph of c(x), a piecewise function, and determine the following answers in interval notation.



Relative Minimum(s):

Relative Maximum(s)

9. Solve for *x*. 8(x-3) - (6-2x) = 2(x+2) - 5(5-x)

10. Solve for *a*.  

$$\frac{1}{8}(a+3) = \frac{1}{2}(2-a)$$

11. Solve for *F*.

$$C = \frac{5}{9}(F - 32)$$

12. Solve for t.

$$A = 2pa + prt$$

13. Graph and solve the linear system.



14. Solve the system using substitution or elimination method. -3x - 3y = -18y = -6x + 21



15. The state fair is a popular field trip destination. This year the senior class at High School A and the senior class at High School B both planned trips there. The senior class at High School A rented and filled 8 vans and 8 buses with 240 students. High School B rented and filled 4 vans and 1 bus with 54 students. Every van had the same number of students in it as did the buses. Find the number of students in each van and in each bus.

| Number of Students in a van |  |
|-----------------------------|--|
| Number of Students in a bus |  |

16. Graph the system of inequalities.

 $y \le 4$ 2x + 3y > 6 $2x - y \le 8$ 



17. Solve the system of equations.

$$-6x - 2y - z = 17$$
$$5x + y - 6z = 19$$
$$-4x - 6y - 6z = -20$$



Solutions:

1.  $6x^2 - 7$ 2.  $4c^8 - 4c^4 + 1$ 3. -36, -156, x - 44. 6, -13.6, 266 5.  $g^{-1}(x) = \frac{x+8}{5}$ 6. Answers may vary  $(-\infty, -2]$  or  $[-2, \infty)$ (0,2) (1,0) (-00,2) (2,∞)  $(-\infty, 4)$ (-∞,∞) *x* = 0, 2 y = 0(0,0) (2,4) 7

$$\begin{array}{r}
 -1 & 9 \\
 0 & -7 \\
 1 & 9 \\
 25 & 9
 \end{array}$$

8. 
$$\frac{x}{1} = 3$$

10. 
$$a = 1$$

$$F = \frac{9}{5}C + 32$$

$$F = \frac{9C + 160}{5}$$
12. 
$$t = \frac{A - 2pa}{pr}$$

16.

15. 8 in a van, 22 in a bus



## Algebra 2 Honors: Test 1 Review 2

1. Consider the following polynomial functions:

$$f(x) = x^2 - 4x + 5$$
  
$$g(x) = 7x^2 - 4x - 2$$

Evaluate f(x) - g(x).

2. A polynomial function is given.

$$v(x) = 3x^3 - 9$$

Find  $(v(x))^2$  and write and equivalent expression.

3. An equation is shown.

$$\frac{x^3 - 20}{x - 3} = Ax^2 + Bx + C + \frac{R(x)}{Q(x)}$$

What are the values of B, G(x), and H(x) that would make the equation true? Write the most appropriate answer in each space provided.



4. Consider the following functions.

$$k(x) = \frac{1}{2}x + 4$$
$$j(x) = x^{2}$$
$$m(x) = 7x - 1$$

Evaluate the following function compositions.

 $(m \circ k)(2)$ 

\_\_\_\_\_  $(j \circ m)(-3)$ 

 $(k \circ j)(0)$ 

- 5. What is the inverse function of  $g(x) = 7x^2 3$ ?
- 6. A quadratic function f(x) is shown.



Select symbols and values to restrict the domain of f(x) so that  $f^{-1}(x)$  is also a function.



7. Consider the following graph of h(x), a piecewise function, and determine the following answers in interval notation.



Interval(s) Increasing:

Positive Interval(s):

Interval(s) Decreasing:

Negative Interval(s):

Domain:

y-intercept:

Relative Minimum(s):

Range:

x - itercept(s):

Relative Maximum(s)

9. Solve for *x*.

2(5 - 3x) = x - 4(3 - x)

10. Solve for c.

$$-\frac{1}{9}(2c+3) = \frac{4}{3}(5-c)$$

11. Solve for *C*.

 $D = \frac{C-S}{n}$ 

12. Solve for y.

ax + by = c

13. Graph and solve the linear system.



14. Solve the system using substitution or elimination method. y = -3x + 5

5x - 4y = -3



15. Matt and Ming are selling fruit for a school fundraiser. Customers can buy small boxes of oranges and large boxes of oranges. Matt sold 3 small boxes of oranges and 14 large boxes of oranges for a total of \$203. Ming sold 11 small boxes of oranges and 11 large boxes of oranges for a total of \$220. Find the cost each of one small box of oranges and one large box of oranges.

| Cost of a small box of oranges |  |
|--------------------------------|--|
| Cost of a large box of oranges |  |

16. Graph the system of inequalities.

x < 6 $-2x + 3y \ge -21$ 3x - 2y > 4



17. Solve the system of equations.

$$-5x + 3y + 6z = 4$$
  
$$-3x + y + 5z = -5$$
  
$$-4x + 2y + z = 13$$



Solutions:

- 1.  $-6x^2 + 7$
- 2.  $9x^6 54x^3 + 81$
- **3.** 3, 7, *x* − 3
- **4.** 34, 484, 4
- 5.  $g^{-1}(x) = \sqrt{\frac{x+3}{7}}$
- 6. Answers may vary  $(-\infty, 2]$  or  $[2, \infty)$ 
  - $\begin{array}{ll} (-\infty,2)\cup(-1,\infty) & (-2,-1) \\ (-3.5,-1)\cup(1,\infty) & (-\infty,-3.5)\cup(-1,1) \\ (-\infty,\infty) & (-\infty,,\infty) \end{array}$
  - y = -1 x = 1
- 7. (-1,-2) (-2,-2)

- 10. *c* = 6.3
- 11. C = nD + S
- 12.  $y = \frac{c-ax}{b}$
- 13. (4,2)

15. 7 small, 13 large



16.

